Seiten

Montag, 13. August 2018

Schmartwatch [05]: Gehäuse

Eine anständige Armbanduhr benötigt ein anständiges Äußeres. Um mit dem DIY Stil der Uhr zu gehen, habe ich ein Gehäuse designed, das aus mehren Teilen besteht. Alle Teile sind so ausgelegt, dass sie im 3D-Druckverfahren hergestellt werden können. Gleichzeitig sollen sie aber auch aus Aluminium fräsbar sein.
Die Flex-Leiterplatte wird in die Gehäusebasis eingelegt. Dazu ist die Kontur des PCBs in der Innenseite abgebildet.
In die Löcher der Basis kommen Stößel für die Druckknöpfe. Je zwei pro Seite sind auf einer gemeinsamen Querplatte und betätigen mit der Platte die Taster auf der Elektronik.
Auf das PCB wird ein Kuststoffrahmen aufgesetzt. Dieser hat Aussparungen für das Display und die Batterie. Die Querplatten sind an der Kante gelagert, um eine Wippe zu bilden.
So kann immer nur die Taste hinter dem Stößel betätigt werden, egal wie feste gedrückt wird. Diese Konstruktion befindet sich also oberhalb der Elektronik und bildet damit auch die Auflagefläche für den Deckel. Wie genau ich den Deckel befestigen möchte ist mir noch nicht klar. Er ist nur 1,7mm dick, was eine Verschraubung erschwert. Die Batterie im Inneren muss wechselbar sein, daher kann ich den Deckel auch nicht verkleben. Hier brauche ich also noch eine Lösung. Ich habe schon eine Vorstellung, wie ich den Deckel mit dem Kunststoffrahmen verbinde und diesen dann von hinten mit Schrauben in der Basis-Schale halte. Wasserdicht ist die Uhr auf keinen Fall.
Wie gut sich die Modelle im 3D-Drucker herstellen lassen wird sich zeigen. Dazu brauche ich aber erst mal ein funktionierendes Board mit der wichtigsten Funktion: Anzeige der Uhrzeit.

Dienstag, 31. Juli 2018

Schmartwatch [04]: Firmware Blinky

Der Erste Schritt zur Inbetriebnahme einer Leiterplatte ist die Validierung der Stromversorgung.
Die Leiterplatten sind geliefert worden und ich habe eine teilweise bestückt. Ich habe zuerst den 3,3V Boost Regler installiert. Mit einem Oszilloskop habe ich die Spannung am Ausgang des Reglers bewertet. Mit einer Last, die dem Regler 15mA konstant abverlangte, kam ich auf einen Ripple von 20mV auf der Ausgangsspannung. Dieser Ripple änderte sich nicht, egal ob die Ausgangsspannung mit nur 1mA oder mit 100mA belastet wurde. Daher habe ich als nächstes das Funkmodul bestückt. Mit dem bestückten Funkmodul war ich dann in der Lage eine Verbindung mit dem Debugger herzustellen. Als Debugger verwende ich einen  JLink Pro von der Firma Segger. Nordic Semiconducters hat für diese Serie an Debuggern einen hervorragend Support.

Nachdem auch der Debugger mit dem Funkmodul in Betrieb genommen war, habe ich die restlichen Bauteile für die Ansteuerung des Displays aufgelötet. Das Display hat im Controller einige Reglerfunktionen integriert und kann sich eigene Hilfsspannungen erzeugen, dazu braucht es lediglich ein paar Kondesatoren, einen Transistor und einige SPI Befehle. Das Footprint des Transostors im Layout der Leiterplatte ist fehlerhaft, die Pins Gate und Drain sind vertauscht. Ein einfaches drehen des Transistors hat das aber wieder repariert.

Ohne angeschlossenes und konfiguriertes Display ist also die Schaltung nicht funktionsfähig. Trotzdem kann sie mit einem einfachen Toggle Signal an allen betroffenen IO-Pins auf Funktionalität und Kurzschlüsse getestet werden.
Kurzschlüsse auf Pins des Displays zeichnen sich hauptsächlich durch die Verlust der Signalqualität am Display Stecker aus. Wenn also ein Output Pin des Funkmoduls, der ein High Signal liefern soll, versucht gegen ein kurzgeschlossenes Low-Signal zu treiben, wird sich die Spannung ungefähr in der Hälfte des erwarteten Wertes befinden.
Nach Beseitigung der Kurzschlüsse am Displaysteckverbinder kann die Inbetriebnahme des Displays beginnen. Dazu habe ich eine Testsoftware geschrieben, die das Display startet und Werte anzeigen soll. Mit Hilfe der verfügbaren Ressourcen auf dem Funkmodul wird ein Bild erstellt, dass dem Display Pixel für Pixel übergeben wird. Danach wird gefragt, ob das Display bereit ist und wenn das der Fall ist, wird das nächste Bild übertragen.

Aktuell startet das Display die Hilfsspannungen nicht von alleine und es zeigt nichts an. Dieser Zustand benötigt viel (relativ zum normalen Betrieb) Strom, sodass das Display spürbar wärmer wird.

Wie genau sich die Ansteuerung in dieser Schaltung zu der Ansteuerung auf dem Eval-Board unterscheidet, wird sich zeigen, wenn das Evalboard den langen weg aus China zu mir gefunden hat.
Bis dahin stehen noch weitere Peripherien zur Verfügung die gerne in Betrieb genommen werden möchten. Darunter fallen:

  • I2C Bus für Echtzeituhr
  • I2C Bus für Bewegungssensor
  • Applikationsstruktur der Firmware (nachladbare Code Teile)
  • BLE Softdevice 
Im Moment können wir lediglich davon ausgehen, dass alle Pins des Funkmoduls korrekt gelötet und bisher keine Kurzschlüsse auf der Leiterplatte sind. 



Montag, 23. Juli 2018

Schmartwatch [03]: Firmware - Mockup

Die Entwicklung von Firmware für eine Hardware, die noch nicht im finalen Design vorliegt, oder überhaupt in Realität verfügbar ist, ist schwierig. Ebenso verhält es sich mit der Schmartwatch Firmware. Die Hardware ist in der Prototypenphase bestellt. Das heißt aber nicht, dass mit der Firmwareentwicklung gewartet werden muss. Ich habe vor so wenig Bibliotheken wie möglich einzubinden und viele Funktionen selbst zu schreiben. Das soll mehr zum Üben und Lernen dienen als zeiteffizient zu entwickeln.

Um die Funktionen testen zu können, werden sie in verschiedenen Abstraktionsebenen entwickelt.
Die grundlegende Ebene ist die direkte Hardware-Ebene; die CPU. Dort werden die Register der einzelnen Peripherien angesprochen. Das werde ich über die bereits verfügbare Hersteller SDK Schnittstelle machen. Auch den Bluetooth Stack des Herstellers werde ich übernehmen. Denn die Programmierung der Hardware Funktionen sind von Hersteller zu Hersteller, machmal auch von Chip zu Chip unterschiedlich. Einen Bluetooth-LE Stack selbst zu schreiben finde ich auch keine sinnvolle Beschäftigung. Vor allem, wenn das Ziel ist eine Smartwatch zu programmieren.

Eine der selbst geschriebenen Funktionen wird jedoch die Erstellung von Bildschirm Inhalten sein. Die Uhr besitzt ein 3-Farben e-ink Display. Rot, Schwarz und Weiß. Damit bieten sich verschiedene Möglichkeiten an, um Grafiken anzuzeigen. Ich habe mich für folgende Zeichenfeatures entschieden:

  • Einzelne Pixel
  • Linien
  • Rechtecke
  • Rechteckige Flächen
  • Rechtecke mit runden Ecken
  • Rechteckige Flächen mit runden Ecken
  • Kreisringe
  • Kreisförmige Flächen
Gezeichnet werden kann in den drei Fraben und transparent. Transparent bedeutet, dass die an dieser Stelle vorhandene Farbe beibehalten werden soll. Um noch weitere Elemente auf das Display zu zeichnen, werden diese Funktionen zur Verfügung stehen:
Diese Grundfunktionen zu grafischen Darstellung auf dem Display kann ich testen, ohne eine echte Hardware auf dem Tisch zu haben. Dazu schrieb ich eine Windows Software, die das Display der Uhr in 2-facher Vergrößerung anzeigt und alle die Funktionen meiner Grafik Bibliothek verwendet.

Um ein Bild für das Display zu zeichnen, befindet sich im RAM der Smartwatch ein Framebuffer, das ist ein Speicherbereich, der Informationen zu allen Pixeln des Displays beinhaltet. Mit dem 'render' Befehl, werden alle Daten aus dem RAM in das Display kopiert und angezeigt. So können Bildteile verändert werden, ohne dass von Außen eine Änderung auf dem Display sichtbar ist. Erst wenn der Bildschirm fertig erzeugt ist, wird er an das Display übertragen und in einem Rutsch dargestellt.

Die Übertragung und das Rendern der Bilddaten ist eine Hardware abhängige Funktionalität. Das Schreiben auf den Framebuffer hingegen kann unabhängig der Hardware passieren. Das machen wir uns hier zu nutze. Die Windowsanwendung nutzt die Schmartwatch Funktionen der eigenen Grafik Bibliothek um auf ein Framebuffer zu schreiben. Eine Renderer Funktion der Windows Anwendung kopiert dann den Framebuffer in ein Windows geeignetes Speicherformat und gibt es um den Faktor 2 vergrößert am Monitor aus.


Hier sehen wir einen Screenshot der Anwendung. Die schwarzen und roten Rechtecke gehören zur Displayfläche dazu. Es werden zwei Texte gezeichnet, die einer Uhrzeit entsprechen, zwei unterschiedlich farbige Linien und ein Kreis, sowie eine große schwarze Fläche. Die Grafik rechts inclusive Text ist ein monochromes Bild, das ebenfalls als schwarz / transparent gerendert wird.

Transparent ist die virtuelle vierte Farbe des Displays. Sie bedeutet, dass für dieses Pixel der bereits im Framebuffer liegende Wert beibehalten werden soll. Somit können Bilder übereinander dargestellt werden. Das wird in der Phase der Watchface Programmierung noch häufiger genutzt werden. Die Schriftarten, die standartmäßig in dem Betriebsystem der Uhr verwendet werden, sind natürlich von der Größe her begrenzt. So bietet es ich an, für die Anzeige der Uhrzeit Bitmaps zu verwenden. Auch grafische Effekte können mit mehreren Layern erzeugt werden.

Der Windows Simulator hat den Vorteil, dass im PC nahezu unbegrenzte Rechenkapaität zur Verfügung steht. Im vergleich zu einer Embedded CPU in unserer Smartwatch, versteht sich. Daher kann der Bildschirminhalt so schnell wie möglich immer wieder komplett geschrieben werden. Für eine spätere Implementierung mit e-Paper ist es wichtig die Aktualisierungsrate der Frames gering zu halten. Wenn möglich soll nur ein Teil des Displays aktualisiert werden. Wie genau das funktioniert und wie performant sich das lösen lässt, wird sich zeigen, wenn das Display des ersten Prototyps angesteuert wird.

Die Lieferung mit den FR4 Prototypen ist heute eingegeangen. Jetzt kann die Bestückung beginnen ind die Inbetriebnahme der Hardware, sowie die ersten Funktionen der Firmware.